SpaceX Starlink satellite internet tested in the field in Antarctica


SpaceX’s Starlink internet continues to find success in Antarctica, Earth’s icy southernmost continent and has spread beyond McMurdo Station.

The company first reported that Starlink reached Antarctica as part of a National Science Foundation experiment in September 2022. The milestone also marked the satellite internet network’s arrival on all seven continents.

A series of lasers

Just ~5% of the almost 3400 working Starlink satellites currently in orbit make coverage of Antarctica (and the Arctic) possible. SpaceX currently has 181 polar-orbiting satellites in operational orbits, likely providing a decent amount of coverage in polar regions. But that’s only a third of the 520 polar satellites SpaceX’s Starlink Gen1 constellation will have once complete, meaning that coverage is likely intermittent for the time being.

Those polar satellites must also use optical interlinks (lasers) to connect Antarctic users to ground stations hundreds or thousands of miles away, as the vast and sparsely populated continent has no Starlink ground stations. Instead, users are connected to the internet via space lasers that route their communications to and from ground stations in South America, Australia, New Zealand, and other nearby locales.

Each Starlink V1.5 satellite has several laser link terminals that allow the constellation to create a mesh network in space and reach even the remotest users. (SpaceX)

Studying the oldest ice on Earth

The general purpose of the Center for Oldest Ice Exploration (COLDEX) field experiment Starlink is aiding is to find the oldest ice on Earth. That old ice allows scientists to peer back tens of thousands, hundreds of thousands, or even millions of years back into Earth’s past. Most importantly for the modern era, that ice can contain shockingly detailed information about the history of Earth’s climate.

Researchers like Dr. Neff collect ice cores by drilling miles into Antarctic ice sheets. Once removed, packaged, and carefully shipped by plane to labs around the world, the data extracted from those ice cores can tell researchers how the Earth has responded in the past to major and minor changes in climate. Knowing how it has responded and behaved before has helped scientists around the world determine with near certainty that human greenhouse gas emissions are causing average global temperatures to increase at a relatively rapid pace. Further studies, like those being done now, may help specify what kind of changes we can expect as climates warm; allowing cities, countries, and humanity as a whole to prepare for the worst while (hopefully) trying to prevent those outcomes.

COLDEX began testing Starlink in the field in early December 2022. It’s not entirely clear if that testing is still ongoing, but Dr. Peter Neff appears to be optimistic either way. In a January 21st tweet, the assistant professor and field research director said that he was excited “to see how [Starlink] & other modes of high-speed connectivity can advance [science] communication [and]…alter how we do science on the ice.”

Finding a balance

The National Science Foundation has been a part of both Antarctic Starlink experiments, thus far, and finds itself in a unique position. Through funding and other means, the government agency is aiding efforts to test the limits of the SpaceX network and discover how it can benefit science (and improve life) in some of the harshest environments on Earth. Simultaneously, NSF holds a sort of supervisory role over other aspects of SpaceX’s Starlink constellation.

For the most part, that relationship is on an even keel and SpaceX has been highly forthcoming and happy to cooperate. Even without any explicit legal requirement, SpaceX has made wide-reaching changes to its satellites and continues to experiment with ways to reduce their brightness to ground observers and limit their impact on astronomy. Nonetheless, the FCC’s decision to tie SpaceX’s next-generation Starlink Gen2 constellation license with its cooperation with the NSF has given the latter agency a bit more regulatory power than it had before.

That arguably makes the involvement of the NSF (or NSF-funded researchers) in testing Starlink’s ability to benefit science even more important. Knowing firsthand how impactful the ability to access high-bandwidth internet can be in the field and at remote camps, the NSF should be better suited to make the kind of cost-benefit analyses required to determine how much of an impact (on the night sky and astronomy) is acceptable relative to the benefits Starlink can provide.

SpaceX Starlink satellite internet tested in the field in Antarctica









Leave a Comment

Your email address will not be published. Required fields are marked *